+更多
专家名录
唐朱昌
唐朱昌
教授,博士生导师。复旦大学中国反洗钱研究中心首任主任,复旦大学俄...
严立新
严立新
复旦大学国际金融学院教授,中国反洗钱研究中心执行主任,陆家嘴金...
陈浩然
陈浩然
复旦大学法学院教授、博士生导师;复旦大学国际刑法研究中心主任。...
何 萍
何 萍
华东政法大学刑法学教授,复旦大学中国反洗钱研究中心特聘研究员,荷...
李小杰
李小杰
安永金融服务风险管理、咨询总监,曾任蚂蚁金服反洗钱总监,复旦大学...
周锦贤
周锦贤
周锦贤先生,香港人,广州暨南大学法律学士,复旦大学中国反洗钱研究中...
童文俊
童文俊
高级经济师,复旦大学金融学博士,复旦大学经济学博士后。现供职于中...
汤 俊
汤 俊
武汉中南财经政法大学信息安全学院教授。长期专注于反洗钱/反恐...
李 刚
李 刚
生辰:1977.7.26 籍贯:辽宁抚顺 民族:汉 党派:九三学社 职称:教授 研究...
祝亚雄
祝亚雄
祝亚雄,1974年生,浙江衢州人。浙江师范大学经济与管理学院副教授,博...
顾卿华
顾卿华
复旦大学中国反洗钱研究中心特聘研究员;现任安永管理咨询服务合伙...
张平
张平
工作履历:曾在国家审计署从事审计工作,是国家第一批政府审计师;曾在...
转发
上传时间: 2024-05-03      浏览次数:710次
Bitcoin Forensic Analysis Uncovers Money Laundering Clusters and Criminal Proceeds

 

https://thehackernews.com/2024/05/bitcoin-forensic-analysis-uncovers.html

 

A forensic analysis of a graph dataset containing transactions on the Bitcoin blockchain has revealed clusters associated with illicit activity and money laundering, including detecting criminal proceeds sent to a crypto exchange and previously unknown wallets belonging to a Russian darknet market.

 

The findings come from Elliptic in collaboration with researchers from the MIT-IBM Watson AI Lab.

 

The 26 GB dataset, dubbed Elliptic2, is a "large graph dataset containing 122K labeled subgraphs of Bitcoin clusters within a background graph consisting of 49M node clusters and 196M edge transactions," the co-authors said in a paper shared with The Hacker News.

 

Elliptic2 builds on the Elliptic Data Set (aka Elliptic1), a transaction graph that was made public in July 2019 with the goal of combating financial crime using graph convolutional neural networks (GCNs).

 

The idea, in a nutshell, is to uncover illicit activity and money laundering patterns by taking advantage of blockchain's pseudonymity and combining it with knowledge about the presence of licit (e.g., exchange, wallet provider, miner, etc.) and illicit services (e.g., darknet market, malware, terrorist organizations, Ponzi scheme, etc.) on the network.

 

"Using machine learning at the subgraph level – i.e., the groups of transactions that make up instances of money laundering – can be effective at predicting whether crypto transactions constitute proceeds of crime," Tom Robinson, chief scientist and co-founder of Elliptic, told The Hacker News.

 

"This is different to conventional crypto AML solutions, which rely on tracing funds from known illicit wallets, or pattern-matching with known money laundering practices."

 

The study, which experimented with three different subgraph classification methods on Elliptic2, such as GNN-Seg, Sub2Vec, and GLASS, identified subgraphs that represented crypto exchange accounts potentially engaged in illegitimate activity.

 

Furthermore, it has made it possible to trace back the source of funds associated with suspicious subgraphs to various entities, including a cryptocurrency mixer, a Panama-based Ponzi scheme, and an invite-only Russian dark web forum.

 

Robinson said just considering the "shape" – the local structures within a complex network – of the money laundering subgraphs proved to be an already effective way to flag criminal activity.

 

Further examination of the subgraphs predicted using the trained GLASS model has also identified known cryptocurrency laundering patterns, such as the presence of peeling chains and nested services.

 

"A peeling chain is where a small amount of cryptocurrency is 'peeled' to a destination address, while the remainder is sent to another address under the user's control," Robinson explained. "This happens repeatedly to form a peeling chain. The pattern can have legitimate financial privacy purposes, but it can also be indicative of money laundering, especially where the 'peeled' cryptocurrency is repeatedly sent to an exchange service."

 

"This is a known crypto laundering technique and has an analogy in 'smurfing' within traditional finance – so the fact that our machine learning mode independently identified it is encouraging."

 

As for the next steps, the research is expected to focus on increasing the accuracy and precision of these techniques, as well as extending the work to further blockchains, Robinson added.